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Posets

A partially ordered set (poset) (P,≤) is a set P equipped with an
partial order relation ≤ such that

• (Reflexivity) For all p ∈ P, we have that p ≤ p

• (Antisymmetry) For all a, b ∈ P, if a ≤ b and b ≤ a, then
a = b

• (Transitivity) For all a, b , c ∈ P, if a ≤ b and b ≤ c, then a ≤ c

A totally ordered set is a poset with the additional axiom

• (Strongly connected) For all a, b ∈ P, either a ≤ b or b ≤ a



Hasse diagrams

We can represent posets using Hasse diagrams. Let (P,≤) be a
poset. Then each p ∈ P is a vertex with an upward edge from p to
q whenever q covers p, i.e., we have that

• p < q

• There is no r such that p < r < q

Example In the poset of UF courses where “p ≤ q” means “p is a
prerequisite for q,” the relation MAC2312 ≤ MAS4105 is not a
covering relation.

MAC2312

MAC2313 MHF3202

MAS4105



More examples of posets

Natural numbers N with divisibility:
a ≤ b iff ac = b for some c

Monomials in K [x, y] with divisibility:
a ≤ b iff ac = b for some c
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Rings🪐

A ring (R ,+, ∗, 1) is a set R with binary operations +, ∗ and a
multiplicative identity 1 such that

(R ,+) is an abelian group

(R , ∗) is a monoid

∗ distributes over +

Example The set of polynomials in one variable with coefficients
from a field K, denoted R = K [x], is a ring.
• (x2 + x − 1) + (x + 1) = x2 + 2x
• x(x2 + 3) = x3 + 3x

Example Polynomials in several variables K [x1, x2, . . . , xn]

Example Quotients of polynomial rings
K [x1, x2 . . . , xn]

(f1, f2, . . . , fm)



Quotients of polynomial rings
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Ranked posets

A poset P is ranked if there exists a rank function r : P → N such
that r(a) + 1 = r(b) whenever b covers a.

rank 0
rank 1
rank 2
rank 3
rank 4

Ranked poset Non-ranked poset

Example Monomial posets are ranked by degree, e.g. r(x2y) = 3.



Shadows and segments

For a subset A of a poset P, the upper shadow of A is

∆

PA = {p ∈ P | p covers a for some a ∈ A } .

If a poset comes with an additional total order, the initial segment
Segd q is the largest q elements of rank d with respect that total
order.
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P{x} = {x2, xy}
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∆
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∆
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Macaulay posets

Let (P,≤) be a ranked poset. Then P is Macaulay iff there exists a
total order O such that
• (Nestedness) Initial segments have the smallest upper

shadows.
• (Continuity) The upper shadow of an initial segment is an

initial segment.
A ring is Macaulay iff its monomial poset is Macaulay.
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Examples of Macaulay posets

Chain Spider Box



Non-Macaulay poset
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Cartesian product ×

Let Pi with 1 ≤ i ≤ n be posets. Their cartesian product is

P1 × P2 × · · · × Pn =
{
(p1, · · · , pn) | pi ∈ Pi

}
where (p1, · · · , pn) ≤ (p′1, · · · , p

′
n) if and only if pi ≤ p′i for 1 ≤ i ≤ n.

Example A box is a product of chains.

× =

Theorem [Macaulay 1927] The ring K [x1, . . . , xn] is Macaulay.
Theorem [Clements-Lindström 1969] K [x1,...,xn]

(xd1
1 ,...,x

dn
n )

is Macaulay.



Cartesian product ×

Example The poset of subsets of {x, y, z} is

2{x,y,z} � {1, x} × {1, y} × {1, z} .

∅

{x} {y} {z}

{x,y} {x,z} {y,z}

{x,y,z}

= × ×
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This is also the monomial poset of

K [x, y, z]
(x2, y2, z2)

�
K [x]
(x2)

⊗
K [y]
(y2)

⊗
K [z]
(z2)

.



Tensor product ⊗

The tensor product of rings is the following.

K [x1, . . . , xm]

(f1, . . . fp)
⊗

K [y1, . . . , yn]

(g1, . . . , gq)
=

K [x1, . . . , xm, y1, . . . , yn]

(f1, . . . fp , g1, . . . , gq)

Analogous to Cartesian product: M(S) ×M(T) =M(S ⊗ T)
[Kuzmanovski 2023].
Example K [x]

(x3)
⊗

K [y]
(y3)

=
K [x, y]
(x3, y3)
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× =



Tensor product ⊗

Example Here’s a non-Macaulay tensor product of Macaulay rings.

K [x]
(x2)

⊗
K [y, z]

(y3, y2z, yz2, z3)
=

K [x, y, z]
(x2, y3, y2z, yz2, z3)
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(1,1)

(x,1) (1,y) (1,z)

(x,y) (x,z) (1,y2) (1,yz) (1,z2)

(x,y2) (x,yz) (x,z2)

× =

Conjecture Suppose R is a Macaulay ring whose ideal is
generated by monomials. Suppose n is larger than the highest
degree of a monomial in R. Then K [x]

(xn)
⊗ R is Macaulay.

Theorem [Mermin and Peeva 2007] This is true for n = ∞.



Cartesian product ×

Here’s the smallest non-Macaulay Cartesian product of two
non-trivial Macaulay posets.

× =



Tensor product ⊗

Here’s the smallest non-Macaulay Cartesian product of two
non-trivial Macaulay monomial posets of rings.

K [x]
(x2)

⊗
K [y, z]

(y3, y2 − z2, z3)
=

K [x, y, z]
(x2, y2 − z2, y3, z3)
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Wedge Product ∨

Suppose each (Pi ,≤i) has a unique minimum element `i . The
wedge product of the Pi is

P1 ∨ P2 ∨ · · · ∨ Pn =

 n⊔
i=1

Pi

 /(`1 = `2 = · · · = `n)

where a ≤ b if and only if a ≤i b in Pi for some i.
Example A spider is a wedge of chains.

∨ =

Theorem [Bezrukov–Elässer 2000] Spiders are Macaulay.



Fiber product over K

The fiber product over K of rings is the following.

K [x1, . . . , xm]

I
×K

K [y1, . . . , yn]

J
=

K [x1, . . . , xm, y1, . . . , yn]

I + J + (xiyj | 1 ≤ i ≤ m, 1 ≤ j ≤ n)

This is analogous to wedge product: M(S)∨M(T) =M(S ×K T).
Example

K [x]
(x2)

×K
K [y]
(y3)

=
K [x, y]

(x2, y3, xy)
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y

y2

1
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y2

∨ =



Wedge product of boxes � ∨ � = � ×K �

Theorem If P and Q are box posets of shape m × n and m′ × n′,
respectively, such that 2 ≤ m ≤ n and 2 ≤ m′ ≤ n′, then their
wedge P ∨ Q is Macaulay if and only if m ≤ m′ and n ≤ n′ or vice
versa.
Example

2 × 3 wedge 3 × 3 2 × 4 wedge 3 × 3
Macaulay Not Macaulay



💎 Diamond product ^

Suppose `i , Li are respectively the unique minimal and maximal
element of (Pi ,≤i). The diamond product is

P1�P2�· · ·�Pn =

 n⊔
i=1

Pi

 /(`1 = `2 = · · · = `n, L1 = L2 = · · · = Ln)

where a ≤ b if and only if a ≤i b in Pi for some i.

^ =



Connected sum #K

The connected sum over K of rings is the following.

S#K T =
S ×K T

maxM(S) −maxM(T)

Analogous to diamond product: M(S) �M(T) =M(S#K T)
Example

K [x]
(x3)

#K
K [y]
(y3)

=
K [x, y]

(x3, y3, xy, x2 − y2)
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Diamond product of boxes � � �

Theorem
If P and Q are box posets of the same rank, then P � Q is
Macaulay if and only if one of the following is true:
• P is the same as Q or
• P = path poset, Q = 2 × q box poset or vice-versa.

Example

2 × 3 diamond 1 × 4 2 × 4 diamond 3 × 3
Macaulay Not Macaulay



Relations among t, ∨, ^

Theorem
n⊔

i=1
Pi is Macaulay =⇒

n∨
i=1
Pi is Macaulay =⇒

n
^

i=1
Pi is Macaulay

Example K [x,y,z]
(xz,yz,x2−xy,x2−y2,x3−y3)

shows that ∨: ^

1

a b c x y z

a2 c2 x2 z2

a3 z3

1

a b c x y z

a2 c2 x2 z2

z3



Relations among t, ∨, ^

Theorem With r , s, t > 1, the following are equivalent:

• P is additive

•
r⊔

i=1
P is Macaulay wrt the union simplicial order

•
s∨

i=1
P is Macaulay wrt the union simplicial order

•
t
^

i=1
P is Macaulay wrt the union simplicial order



Fiber Product

If posets P and Q have a common subposet R, the fiber product
P ×R Q takes the disjoint union and identifies corresponding
elements in R.

× =



Heart posets � ×� � =💙

A heart poset is obtained by taking the fiber product of two box
posets along their common box subposet.
Example A 5 × 3 box glued to a 2 × 5 box along their common
2 × 3 subbox.
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Macaulay heart posets

Theorem Assuming the red node has rank higher than the blue
node, the heart poset is Macaulay if and only if the green node has
rank higher than the orange node.
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The order with respect to which the poset is Macaulay depends on
whether the cyan node is above or below the blue node.



Orders in heart posets

If the cyan node has rank above a certain threshold, we use what
is called the lex order. Else, we use the twist order.

Lex order
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Applications

Macaulay posets and rings are used in enumerative
combinatorics and commutative algebra. I’m not personally
familiar with these applications, but here’s part of the introduction
section of Nikola Kuzmanovski’s paper:
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Macaulay2

The MacaulayPosets package was developed for the computer
algebra system Macaulay2. An example session is shown below

i1 : loadPackage ‘‘MacaulayPosets’’
i2 : S = QQ[x, y, z]/(x^4, y^2-z^2, z^2-x*y)
i3 : isMacaulay S
o3 : true
i4 : isMacaulay ringConnectedSum(S, S)
o4 : false


