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Let [n] denote the n-element set {1,2,...,n}.



Let [n] denote the n-element set {1,2,...,n}.

Then [o00] = {1,2,...} = Z".



A permutation is a bijection [n] — [n], i.e. a pairing of elements in
one set with elements in another set.
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The permutation 1432 Not a permutation
1—1 1—2<+14
24
3—3
4—1

A permutation o can be written o(1)c(2) - - - o(n), like 1432 above



Example. The Fix Wires task in Among Us involves permuting wires
correctly

The permutation 3412

20— 4
3—=1
4+ 2



A group is a collection of elements along with a nice way of
combining any pair of elements into a new element.

Example. Integers with addition
(2+2)—2=24(2—-2)=2+0=2
Example. Symmetries of a molecule

Example. The symmetric group S,



Permutations live in the symmetric group
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Permutations also live in a poset
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This provides a recursive way to define Schubert polynomials: with
Gu=1,if wes$,and (r,s) is the lex largest inversion of w and
vV = wt,, then

6w = XFGV + Z 6vtq, .

q<r
v<vtgr



Repeatedly applying the Transition Equation

6w == Xr6v + Z 6thr )

q<r
v<vtgr

the Schubert polynomial for 1432 is

G432 = x361423 + G413
= x3(%261324 + G3124) + X262314 + G314
= x3(x2(x2 + G2134) + x162134) + X3 G134 + 0 G3124
= x4 +x10 + X7 ) + x5 + xx1G1324

2 2 2 2
= X5X3 + X1 X0X3 + X{ X3 + X1 X5 + X1X5 .



There are many ways to represent a permutation
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A pipe dream is a finite subset D of Z1 x Z™*.



Pipe dream

A pipe dream is a finite subset D of Z1 x Z™*.

@ Place a cross tile J= at each element of D, say

D ={(2,1),(2,2),(3,1)}.
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A pipe dream is a finite subset D of Z1 x Z™*.
@ Place a cross tile = at each element of D, say

D ={(2,1),(2,2),(3,1)}.

@ Place a bump tile ¥ everywhere else
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A pipe dream is a finite subset D of Z1 x Z™*.
@ Place a cross tile = at each element of D, say

D ={(2,1),(2,2),(3,1)}.
Q Place a bump tile &5 everywhere else
© Follow the pipes from the top to see what permutation it

represents ' l 3 \1

O R -~

». “q‘a > wg
ffj .




Def. An inversion of a permutation ¢ is a pair i < j such that
a(i) > a(j).

Example. inv(1432) = {(2,3),(2,4),(3,4)}, wherever the wires
cross




Def. An inversion of a permutation o is a pair i < j such that
a(i) > a(j).

Def. If ¢; denotes the number of inversions of o starting with /, the
bottom pipe dream of o is has ¢; cross tiles left-justified in row /.
Example. inv(1432) = {(2,3),(2,4),(3,4)}, wherever the wires
cross




Applying a ladder move to a pipe dream yields another pipe dream
representing the same permutation




Starting with the bottom pipe dream and applying all possible ladder
moves yields all representatives of the permutation:
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Starting with the bottom pipe dream and applying all possible ladder
moves yields all representatives of the permutation:

monomial weights

X22X3 X]_X22 X1X2X3 X]?X3 Xsz



Starting with the bottom pipe dream and applying all possible ladder
moves yields all representatives of the permutation:

Summing all the monomial weights yields a Schubert polynomial!

2 2 2 2
X3x3 + X1%, + X1X0X3 + X1 X3 + X1 X2 = O1432



Bumpless pipe dream

A bumpless pipe dream is a tiling of Z* x Z™ with
RN =RilN==

such that the pipes make sense.

1 Ve ?
(I4 Yalld
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r—d2 /—L’—2
1234 1234
) : (

The bump tile “7 is now not used.



Bumpless pipe dream

Applying a droop move yields a new bumpless pipe dream
representing the same permutation.
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Bumpless pipe dream

The Rothe diagram of a permutation is the bumpless pipe dream
where every pipe just goes up, turns right once, then goes right.




Bumpless pipe dream

The Rothe diagram of a permutation is the bumpless pipe dream
where every pipe just goes up, turns right once, then goes right.

It can also be obtained from the matrix representation by replacing
each 1 with an .



Bumpless pipe dream

The Rothe diagram of a permutation is the bumpless pipe dream
where every pipe just goes up, turns right once, then goes right.

It can also be obtained from the matrix representation by replacing
each 1 with an .

It can also be viewed as the set of blank tiles, which is

{(1,0()) [ (1,4) € inv(o)} .



Bumpless pipe dream

Starting with the Rothe diagram and applying all possible droop
moves yields all representatives of the permutation:
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Bumpless pipe dream

Starting with the Rothe diagram and applying all possible droop
moves yields all representatives of the permutation:

X1.X1 1

4
1 x 17 2 XX 1
XoXo 4 X2 4 1234 Xo 4
lozafltuc g
2 2 X1 1 2
1234 1234 XX |X 4711234

r 3
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Summing all the monomial weights yields a Schubert polynomial!

2 2 2 2
X3 X3 + X1X0X3 + X1X, + X1 X3 + X1 X2 = G1432



Kohnert moves

A diagram is a finite subset of Z* x Z*. Now, let (1,1) be the
bottom left instead of the top left.



Kohnert moves

A diagram is a finite subset of Z* x Z*. Now, let (1,1) be the

bottom left instead of the top left.
Applying a Kohnert move to a diagram yields a new diagram: take
a rightmost cell of a row and move it downwards to the next empty

spot, jumping over other cells if necessary.



Kohnert moves

Recall that a Rothe diagram can be equivalently viewed as its set of
blank tiles: {(/,a(j)) | (7,j) € inv(o)} C Z* x Z*
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Hence, Kohnert moves are applicable to Rothe diagrams.



Kohnert moves
Starting with a Rothe diagram and applying all possible Kohnert

moves yields several diagrams:



Kohnert moves

Starting with a Rothe diagram and applying all possible Kohnert

moves yields several diagrams:
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monomial weights
X22X3 X1X2X3 X1X22



Kohnert moves
Starting with a Rothe diagram and applying all possible Kohnert

moves yields several diagrams:
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Summing all the monomial weights yields a Schubert polynomial!
= Gus2

2 2 2
Xy X3 + X1XoX3 + X1X; + X X3 + X{ X2



Kohnert moves
Starting with a Rothe diagram and applying all possible Kohnert

moves yields several diagrams:
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Summing all the monomial weights yields a Schubert polynomial!
= Gus2

x22x3 + X1XoX3 + x1x22 + X12X3 + X1 X2
Starting with a not-necessarily-Rothe diagram would produce a
Kohnert polynomial, which Schubert polynomials are therefore a

special case of.
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