
Boolean Lattice

A Boolean lattice is a relation satisfying a
long list of conditions. This can be decom-
posed into the following ascending chain of
definitions.

Definition. A preorder 1 is a relation ≤ that
is reflexive and transitive.

A partial order is a preorder ≤ that is an-
tisymmetric, i.e x ≤ y ≤ x implies x = y.

A lattice is a partial order in which every
pair of elements x, y have a meet x ∧ y :=
inf{x, y} and a join x ∨ y := sup{x, y}. A
bounded lattice is a lattice which has a mini-
mum 0̂ and a maximum 1̂.

A distributive lattice is a lattice D in
which

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

and

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

for all x, y, z ∈ D.
A complement of an element x of a

bounded lattice L is an x′ ∈ L such that
x ∧ x′ = 0̂ and x ∨ x′ = 1̂. A Boolean lat-
tice is a bounded distributive lattice in which
every element has a unique complement.

Example. Taking the power set of a set X
yields a Boolean lattice (2X ,⊆). Meets are
intersections, joins are unions, and the com-
plement of a Y ⊆ X is X \ Y .

Example. The lattice N5 is given below.

1̂

z

y x

0̂

Here,
x ∧ y = 0̂ = x ∧ z

and
x ∨ y = 1̂ = x ∨ z ,

so y, z are both complements of x.

Example. The lattice M3 is given below.

1̂

◦ ◦ ◦

0̂

A lattice is distributive if and only if it has
no sublattices isomorphic to N5 or M3. So,
the lattice below is distributive.

4

2

1

But, this lattice is not Boolean since 2 has no
complement. More generally, it is possible to
show that the distributive lattice of positive
divisors of an n ∈ Z+ ordered by divisibility
is Boolean if and only if n is squarefree.

Example. The two-element lattice {0, 1}
with 0 < 1 is Boolean. The complement of a
x ∈ {0, 1} is 1− x.

The chain at the beginning of this section
also has two branches we will use.

Definition. An equivalence relation is a pre-
order ≡ that is symmetric, i.e. x ≡ y implies
y ≡ x.

A linear order is a partial order ≤ such
that every pair of elements x, y are compara-
ble, i.e. x ≤ y or y ≤ x.

1Equivalently, a preorder is a category in which, for each pair of objects x, y, there is at most one morphism
from x to y. Then, meets are products and joins are coproducts.
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Formulas

For each set A, we can construct the set WA

of well-formed formulas on A as follows. Let
A be a set which is arbitrary unless otherwise
specified.

Let C = {¬,∨,∧,→, (, )} be a set of 6 cur-
rently meaningless symbols. Let S be the set
of strings on A ∪C. Define maps ε¬ : S → S
and ε∨, ε∧, ε→ : S × S → S by

ε¬(ψ) = ¬(ψ)
ε∨(ϕ, ψ) = (ϕ ∨ ψ)
ε∧(ϕ, ψ) = (ϕ ∧ ψ)
ε→(ϕ, ψ) = (ϕ→ ψ)

for all ϕ, ψ ∈ S. Inductively define subsets
Wi of S for i ∈ Z+ as follows. Let W1 = A.
If i ∈ Z+ such that Wi has been defined, set

Wi+1 = Wi∪ ε¬(Wi)∪
⋃

⊕∈{∨,∧,→}

ε⊕(Wi×Wi) .

Let WA =
⋃

i∈Z+ Wi. The elements of A will
be called atoms, and the elements of WA will
be called well-formed formulas. Elements of
S \WA such as →)((∧¬ are indeed ill-formed.
Next, we see how to assign some meaning to
the elements of WA.

Definition. A map v : WA → {0, 1} is a val-
uation if and only if

v(¬ϕ) = 1− v(ϕ)

v(ϕ ∨ ψ) = max{v(ϕ), v(ψ)}
v(ϕ ∧ ψ) = min{v(ϕ), v(ψ)}
v(ϕ→ ψ) = max{1− v(ϕ), v(ψ)}

for all ϕ, ψ ∈ WA.

So, a valuation is a map which assigns a
truth-value to each well-formed formula in a
way that respects the connectives.

Recall that vector spaces are free over
their bases. If V is a vector space with basis
B, and U is another vector space, then any

map α : B → U can be uniquely extended to
a linear map α : V → U .

B
α //

��

U

V
α

??

Similarly, the set of well-formed formulas WA

is free over the atoms A.

Proposition. Suppose v : A → {0, 1} is a
map. Then, there exists a unique valuation
v : WA → {0, 1} such that v(a) = v(a) for all
a ∈ A.

A v //

��

{0, 1}

WA

v

;;

Now, let’s see an example of how well-
formed formulas can be used to express use-
ful things. Let P be a set. We have
the following bijective correspondence be-
tween the relations on P and the valuations
WP×P → {0, 1}. Using the previous propo-
sition, for each relation ∼ on P , we can let
v∼ : WP×P → {0, 1} be the valuation with
v∼((y, z)) = 1 if and only if y ∼ z. Then

∼ 7→ v∼

is a bijection from the set of relations on P to
the set of valuations WP×P → {0, 1}. If re-
lations on P are viewed as subsets of P × P ,
then the inverse bijection is

v 7→ v−1({1}) ∩X ×X .

Observe that a relation ∼ on P is reflexive if
and only if

1 = v∼((p, p))

for all p ∈ P . A relation ∼ on P is transitive
if and only if

1 = v∼(((p, q) ∧ (q, r)) → (p, r))

for all p, q, r ∈ P . Indeed, if p, q, r ∈ P with
p ∼ q and q ∼ r and

1 = v∼(((p, q) ∧ (q, r)) → (p, r)) ,
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then v(p, q) = v(q, r) = 1 and

1 = max{1−min{v(p, q), v(q, r)}, v(p, r)}
= max{0, v(p, r)} ,

whence v(p, r) = 1 and p ∼ r. If ∼ is tran-
sitive and p, q, r ∈ P and v(p, r) = 0, then
v(p, q) = 0 or v(q, r) = 0, so

v∼(((p, q) ∧ (q, r)) → (p, r))

= max{1−min{v(p, q), v(q, r)}, 0}
= 1−min{v(p, q), v(q, r)}
= 1 .

Similarly for antisymmetry and comparabil-
ity. Let

T ={(p, q) ∈ P × P | p = q}
∪ {((p, q) ∧ (q, r)) → (p, r) | p, q, r ∈ P}
∪ {¬((p, q) ∧ (q, p)) | p, q ∈ P and p ̸= q}
∪ {(p, q) ∨ (q, p) | p, q ∈ P} .

So, a relation ∼ on P is a linear order if and
only if 1 = inf v∼(T ).

Preorder to Partial Order

The following is a natural2 way to obtain a
partial order from a preorder. Suppose ≤ is
a preorder on a set X. Define an equivalence
relation ≡ on X by x ≡ y if and only if x ≤ y
and y ≤ x. For each x ∈ X, let

[x] = {y ∈ X | y ≡ x}

denote the equivalence class of x. Let

X∗ = (X/ ≡) = {[x] | x ∈ X}

denote the quotient of X by ≡. Define the
relation ≤∗ on X∗ by [x] ≤∗ [y] if and only if
x ≤ y.

Proposition. The relation ≡ is indeed an
equivalence relation. The relation ≤∗ is a
well-defined partial order.

Proof. The relation ≡ is reflexive and transi-
tive since ≤ is reflexive and transitive. The
relation ≡ is symmetric since its definition is
symmetric.

If a ≡ y ≤ z ≡ b, then a ≤ y ≤ z ≤ b
and a ≤ b. The relation ≤∗ is a partial order
since ≤ is a partial order.

Define a relation ⊨ on WA by ϕ ⊨ ψ if
and only if v(ϕ) ≤ v(ψ) for all valuations v.
Equivalently, ϕ ⊨ ψ if and only if, for all valu-
ations v, we have v(ϕ) = 1 implies v(ψ) = 1.

Proposition. The relation ⊨ is a preorder.

Proof. Suppose ϕ ∈ WA. Since v(ϕ) ≤ v(ϕ)
for all valuations v, we have ϕ ⊨ ϕ.

Suppose ϕ, ψ, χ ∈ WA with ϕ ⊨ ψ and
ψ ⊨ χ. If v is a valuation, then v(ϕ) ≤ v(ψ)
and v(ψ) ≤ v(χ), and thus v(ϕ) ≤ v(χ). So
ϕ ⊨ χ.

So, we have a partial order ⊨∗ with ϕ ⊨ ψ
if and only if [ϕ] ⊨∗ [ψ]. Note that v(ϕ) =
v(ψ) for all valuations v if and only if [ϕ] =
[ψ].

Proposition. The partial order ⊨∗ is a
Boolean lattice.

Proof. Suppose [ϕ], [ψ] ∈ W ∗
A. For all valua-

tions v, we have

v(ϕ) ≤ max{v(ϕ), v(ψ)} = v(ϕ ∨ ψ) ,

so ϕ ⊨ ϕ ∨ ψ. Hence [ϕ] ⊨∗ [ϕ ∨ ψ]. Similarly,
[ψ] ⊨∗ [ϕ ∨ ψ]. So [ϕ ∨ ψ] is a common upper
bound for [ϕ] and [ψ].

Suppose [χ] ∈ W ∗
A is another common up-

per bound for [ϕ] and [ψ]. Then, for all val-
uations v, we have v(ϕ) ≤ v(χ) and v(ψ) ≤
v(χ), so

v(ϕ ∨ ψ) = max{v(ϕ), v(ψ)} ≤ v(χ) .

2This way of turning preorders into partial orders is functorial, and is left adjoint to the forgetful functor
from the category of partial orders to the category of preorders.
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Hence ϕ ∨ ψ ⊨ χ, i.e. [ϕ ∨ ψ] ⊨∗ [χ].
So, [ϕ∨ψ] is the least upper bound of [ϕ]

and [ψ], i.e.

[ϕ] ∨ [ψ] = [ϕ ∨ ψ] .

Similarly,

[ϕ] ∧ [ψ] = [ϕ ∧ ψ] .

So, ⊨∗ is a lattice. Also, this shows that it
makes sense to use the same symbols for dis-
junction and conjunction for logic as for join
and meet for orders.

A tautology is a ϕ ∈ WA such that v(ϕ) =
1 for all valuations v. Pick an a ∈ WA and
set ⊤ = (a ∨ (¬a)). For all valuations v, we
have

v(⊤) = v(a ∨ (¬a))
= max{v(a), v(¬a)}
= max{v(a), 1− v(a)}
= 1

So, for all ϕ ∈ WA, we have

v(ϕ) ≤ 1 = v(⊤)

for all valuations v, and thus ϕ ⊨ ⊤, i.e.
[ϕ] ⊨∗ [⊤]. So, [⊤] is the maximum element
of W ∗

A.
A contradiction is a ϕ ∈ WA such that

v(ϕ) = 0 for all valuations v. Pick an a ∈ WA,
set ⊥ = (a∧(¬a)), and observe that similarly
⊥ is a contradiction and hence [⊥] is the min-
imum element of W ∗

A.
Suppose [ϕ] ∈ W ∗

A. For all valuations v,
we have

v(ϕ ∨ (¬ϕ)) = max{v(ϕ), v(¬ϕ)}
= max{v(ϕ), 1− v(ϕ)}
= 1

= v(⊤) .

It follows that

[ϕ] ∨ [¬ϕ] = [ϕ ∨ (¬ϕ)] = [⊤] ,

Similarly,

[ϕ] ∧ [¬ϕ] = [⊥] .

So [¬ϕ] is a complement of [ϕ]. Suppose
[ψ] ∈ W ∗ is another complement of [ϕ]. Then

[ϕ ∨ ψ] = [ϕ] ∨ [ψ] = [⊤] .

Suppose v is a valuation. Then

1 = v(⊤)

= v(ϕ ∨ ψ)
= max{w(ϕ), w(ψ)} .

If v(ϕ) = 0, then this implies

v(ψ) = 1 = 1− 0 = v(¬ϕ) .

Otherwise, if v(ϕ) = 1, consider instead

0 = v(⊥)

= v(ϕ ∧ ψ)
= min{v(ϕ), v(ψ)} ,

whence

v(ψ) = 0 = 1− 1 = v(¬ϕ) .

So v(ψ) = v(¬ϕ) for all valuations v, i.e.
[ψ] = [¬ϕ]. So, the complement of [ϕ] is
unique.

We now have a counterexample to the in-
finite extension of the following theorem.

Theorem. Each finite Boolean lattice is iso-
morphic to (2[n],⊆) for some n ∈ Z+ ∪ {0}.

Recall that Cantor’s Theorem says that
if X is a set, then there are no injections
2X → X. In particular, the powerset of a
set is either finite or uncountable. If A is cho-
sen to be countably infinite, then the Boolean
latticeW ∗

A is countably infinite and hence not
isomorphic to a powerset lattice.
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Partial Order to Linear Order

Definition. A subset S ⊆ WA is satisfiable
if and only if there exists a valuation v such
that inf v(S) = 1, i.e. such that v(ϕ) = 1 for
all ϕ ∈ S.

Example. Suppose a ∈ A. Then {a, (¬a)}
is not satisfiable since, if v is a valuation with
v(a) = 1, then v(¬a) = 1− 1 = 0 ̸= 1.

Theorem. A subset S ⊆ W is satisfiable if
and only if every finite subset of S is satisfi-
able.

The theorem above is the Compactness
Theorem.3 It can be used to extend various
results to the infinite case. Dilworth’s The-
orem for partial orders of finite width is one
example. Another is the following.

Definition. A linear extension of a partial
order ⪯ on a set P is a linear order ≤ on P
such that p ⪯ q implies p ≤ q. If relations on
P are viewed as subsets of P × P , then this
is the same as saying ⪯⊆≤.

Lemma. Every finite partial order has a lin-
ear extension.

Proof. Suppose (P,⪯) is a partial order, and
y, z ∈ P are incomparable. Define a relation
≤ on P by p ≤ q if and only if p ⪯ q, or
p ⪯ y and q ⪯ z. So, ≤ is an extension of ⪯
having fewer pairs of incomparable elements
than ⪯. Observe that it is possible to use the
fact that ⪯ is a partial order to check that ≤
is a partial order. So, induction can be used
to obtain the desired result.

Proposition. Every partial order has a lin-
ear extension.

Proof. Suppose (P,⪯) is a partial order. Let

Se = {(p, q) ∈ P × P | p ⪯ q}
St = {((p, q) ∧ (q, r)) → (p, r) | p, q, r ∈ P}
Sa = {¬((p, q) ∧ (q, p)) | p, q ∈ P and p ̸= q}
Sc = {(p, q) ∨ (q, p) | p, q ∈ P} .

Let

S = Se ∪ St ∪ Sa ∪ Sc ⊆ WP×P .

Suppose F ⊆ S is finite. Let Q ⊆ P be the
set of consisting of all elements of P appear-
ing in F . Then Q is finite since F is finite and
the elements of F are finite strings. Then
Q is a finite subposet of P , so the lemma
yields a linear extension ≤ of the ordering on
Q induced by ⪯. Let v : WQ×Q → {0, 1} be
the valuation with v(r, s) = 1 for r ≤ s and
v(r, s) = 0 for r ̸≤ s.

Suppose (p, q) ∈ Se ∩ F . Then p ⪯ q and
p, q ∈ Q. Since p ⪯ q and ≤ is an extension
of ⪯, we have p ≤ q. Then v(p, q) = 1. Sim-
ilarly, since ≤ is transitive, antisymmetric,
and has comparability, it is possible to show
that v(ϕ) = 1 for all ϕ ∈ (St ∪ Sa ∪ Sc) ∩ F .

It follows that F is satisfiable. Using the
Compactness Theorem, there exists a valua-
tion v : WP×P → {0, 1} such that v(ϕ) = 1
for all ϕ ∈ S. Using the last paragraph of the
second section, the relation ≤ on P given by

p ≤ q if and only if v(p, q) = 1

for all p, q ∈ P is a linear extension of ⪯.

Video

youtu.be/f3a-o-Vn7Fg
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3The name of this theorem makes sense since it can be proved using Tychnoff’s theorem.
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