Boolean Lattice

A Boolean lattice is a relation satisfying a
long list of conditions. This can be decom-
posed into the following ascending chain of
definitions.

Definition. A preordevﬂ is a relation < that
is reflexive and transitive.

A partial order is a preorder < that is an-
tisymmetric, i.e z < y < x implies z = y.

A lattice is a partial order in which every
pair of elements x,y have a meet x Ay =
inf{z,y} and a join x Vy := sup{z,y}. A
bounded lattice is a lattice which has a mini-
mum 0 and a maximum 1.

A distributive lattice is a lattice D in
which

xV(yAz)=(xVy AxzVz)
and
cAyVz)=(xAy)V(xA:z)

for all x,y,z € D.

A complement of an element x of a
bounded lattice L is an 2’ € L such that
zA2 =0and zVa = 1. A Boolean lat-
tice is a bounded distributive lattice in which
every element has a unique complement.

Example. Taking the power set of a set X
yields a Boolean lattice (2%,C). Meets are
intersections, joins are unions, and the com-
plement of a Y C X is X \ Y.

Example. The lattice Nj is given below.
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Here,
cANy=0=zAz

and
rVy=1=zVz,

so ¥, z are both complements of x.

Example. The lattice Mj is given below.
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A lattice is distributive if and only if it has
no sublattices isomorphic to N5 or Ms. So,
the lattice below is distributive.
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But, this lattice is not Boolean since 2 has no
complement. More generally, it is possible to
show that the distributive lattice of positive
divisors of an n € Z* ordered by divisibility
is Boolean if and only if n is squarefree.

Example. The two-element lattice {0,1}
with 0 < 1 is Boolean. The complement of a
xe{0,1}is 1 —x.

The chain at the beginning of this section
also has two branches we will use.

Definition. An equivalence relation is a pre-
order = that is symmetric, i.e. x =y implies
Yy = x.

A linear order is a partial order < such
that every pair of elements x,y are compara-
ble, i.e. x <yory < x.

!Equivalently, a preorder is a category in which, for each pair of objects x, y, there is at most one morphism
from x to y. Then, meets are products and joins are coproducts.
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Formulas

For each set A, we can construct the set Wy
of well-formed formulas on A as follows. Let
A be a set which is arbitrary unless otherwise
specified.

Let C = {—,V,A,—,(,)} be aset of 6 cur-
rently meaningless symbols. Let S be the set
of strings on AU C'. Define maps e : S — 5

and ey,ep, e, : S XS — S by
e-(¢) = =(v)

ev(d,¥) = (¢ V)

En(®,¥) = (¢ N Y)

for all ¢,v € S. Inductively define subsets
W; of S for i € Z* as follows. Let W, = A.
If 7 € Z" such that W; has been defined, set

U

®e{V,A,—}

Wi+1 = VVZ U5_\(VVZ‘) U 8@(Wi X Wl) .

Let Wa = U;cz+ Wi The elements of A will
be called atoms, and the elements of W, will

be called well-formed formulas. Elements of Y~

S\ W4 such as —)((A— are indeed ill-formed.
Next, we see how to assign some meaning to
the elements of Wjy.

Definition. A map v: W4 — {0,1} is a val-
uation if and only if

v(=¢) =1 -v(¢)
(¢ V) = max{v(¢),v(¥)}
(@A) = minfu(e), ()}
(¢ = ) = max{l —v(¢), v(y)}

for all ¢, € Way.

So, a valuation is a map which assigns a
truth-value to each well-formed formula in a
way that respects the connectives.

Recall that vector spaces are free over
their bases. If V' is a vector space with basis
B, and U is another vector space, then any

map « : B — U can be uniquely extended to
a linear map o : V — U.

B—-U
A

Similarly, the set of well-formed formulas W4
is free over the atoms A.

Proposition. Suppose v : A — {0,1} is a
map. Then, there exists a unique valuation
v: Wa — {0,1} such that v(a) = v(a) for all
a € A.
A—-1{0,1}
7

BT

Wy

Now, let’s see an example of how well-
formed formulas can be used to express use-
ful things. Let P be a set. We have
the following bijective correspondence be-
tween the relations on P and the valuations
Wpyp — {0,1}. Using the previous propo-
sition, for each relation ~ on P, we can let
: Wpwp — {0,1} be the valuation with
v~((y,2)) =1 if and only if y ~ 2. Then

~ U

is a bijection from the set of relations on P to
the set of valuations Wpy.p — {0,1}. If re-
lations on P are viewed as subsets of P x P,
then the inverse bijection is

v v ({1 NX x X

Observe that a relation ~ on P is reflexive if
and only if

1=v.((p,p))

for all p € P. A relation ~ on P is transitive
if and only if

1=wvo(((p,a) Ag, 7)) = (p,7))
for all p,q,r € P. Indeed, if p,q,r € P with
p~qand g~ r and

L=v.(((p,q) A (g,7)) = (p,7)),
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then v(p,q) = v(g,r) = 1 and

1 = max{1 — min{v(p, q),v(q,7r)},v(p,r)}
= max{0,v(p,r)},

whence v(p,r) = 1 and p ~ r. If ~ is tran-
sitive and p,q,r € P and v(p,r) = 0, then
v(p,q) =0 or v(q,r) =0, so

v (((p,q) A (g,7)) = (p,7))
= max{l — min{v(p, ¢),v(q,7)}, 0}
=1 —min{v(p, q),v(q,7)
=1.

Similarly for antisymmetry and comparabil-
ity. Let

T={(p,q) e PxP|p=gq}
U{((p.a) A (¢,7)) = (p,7) | P g, 7 € P}
U{~((p,9) A (¢,p)) | p,q € P and p # q}
U{(pq) Vv (ep) | p,q€ P},

So, a relation ~ on P is a linear order if and
only if 1 = infu (7).

Preorder to Partial Order

The following is a naturaly way to obtain a
partial order from a preorder. Suppose < is
a preorder on a set X. Define an equivalence
relation =on X by x =y ifandonlyif z <y
and y < z. For each x € X, let

[z] ={y e X |y =u}
denote the equivalence class of x. Let
X' =(X/=)={l] |z e X}
denote the quotient of X by =. Define the

relation <* on X* by [z] <* [y] if and only if
z < y.

Proposition. The relation = is indeed an
equivalence relation. The relation <* is a
well-defined partial order.

Proof. The relation = is reflexive and transi-
tive since < is reflexive and transitive. The
relation = is symmetric since its definition is
symmetric.
fa=y<z=bthna<y<z<bh
and a < b. The relation <* is a partial order
since < is a partial order. O

Define a relation F on Wy, by ¢ F v if
and only if v(¢) < v(¢) for all valuations wv.
Equivalently, ¢ E 1 if and only if, for all valu-
ations v, we have v(¢) = 1 implies v(¢)) = 1.

Proposition. The relation F is a preorder.

Proof. Suppose ¢ € W4. Since v(¢) < v(¢)
for all valuations v, we have ¢ F ¢.

Suppose ¢, 1, x € Wy with ¢ F ¢ and
¥ E x. If v is a valuation, then v(¢) < v(v))
and v(¢) < v(x), and thus v(¢) < v(x). So

¢ F X O
So, we have a partial order F* with ¢ F ¢

if and only if [¢] F* [¢/]. Note that v(¢) =
v(v) for all valuations v if and only if [¢]

[¢].

Proposition. The partial order F* is a
Boolean lattice.

Proof. Suppose [¢], [¢] € W7. For all valua-
tions v, we have

() < max{v(¢),v(P)} = v(p V),
so ¢ E ¢ V1. Hence [¢] E* [¢ V ¢)]. Similarly,
[V] E* [¢ V). So [¢ V] is a common upper
bound for [¢] and [¢)].

Suppose [x] € W} is another common up-
per bound for [¢] and [¢)]. Then, for all val-
uations v, we have v(¢) < v(y) and v(¢)) <

v(x), so
v(¢ V1p) = max{v(¢),v(¥)} < v(x)-

2This way of turning preorders into partial orders is functorial, and is left adjoint to the forgetful functor
from the category of partial orders to the category of preorders.
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Hence ¢ V¢ E x, i.e. [¢ V] E* [x].
So, [¢ V1] is the least upper bound of [¢]
and [¢], i.e.

[PV ] = [Vl
Similarly,

[P A Y] = [o Ay

So, F* is a lattice. Also, this shows that it
makes sense to use the same symbols for dis-
junction and conjunction for logic as for join
and meet for orders.

A tautology is a ¢ € W4 such that v(¢) =
1 for all valuations v. Pick an a € W4 and
set T = (aV (—a)). For all valuations v, we
have

o(T) =v(aV (-a))
= max{v(a),v(—a)}
= max{v(a),1 —v(a)}
—1

So, for all ¢ € Wy, we have
v(g) <1=u(T)

for all valuations v, and thus ¢ F T, i.e.
[¢] E* [T]. So, [T] is the maximum element
of W3.

A contradiction is a ¢ € W, such that
v(¢) = 0 for all valuations v. Pickana € W,
set L = (aA(—a)), and observe that similarly
1 is a contradiction and hence [ L] is the min-
imum element of W3.

Suppose [¢] € W3. For all valuations v,
we have

(¢ V (9)) = max{v(¢), v(=¢)}
= max{v(¢), 1 —v(¢)}
=1
=v(T).

It follows that

(9] V [=¢] = oV (=¢)] = [T],

Similarly,
[6] A [-o] = [1].

So [~¢] is a complement of [¢]. Suppose
[¢)] € W* is another complement of [¢]. Then

[ =[T].

[o VY] =[¢] v
Suppose v is a valuation. Then

1=uo(T)
=v(p V1)
= max{w(¢), w(y)}.

If v(¢) = 0, then this implies
v(¥) =1=1-0=0v(-9).
Otherwise, if v(¢) = 1, consider instead

0=wv(l)
=v(p A )
= min{v(¢),v(¥)},

whence

(@) =0=1-1=0v(=¢).

So v(vp) = v(—¢) for all valuations v, i.e.
[] = [~¢]. So, the complement of [¢] is
unique. ]

We now have a counterexample to the in-
finite extension of the following theorem.

Theorem. Each finite Boolean lattice is iso-
morphic to (2", C) for some n € Z* U {0}.

Recall that Cantor’s Theorem says that
if X is a set, then there are no injections
2X — X. In particular, the powerset of a
set is either finite or uncountable. If A is cho-
sen to be countably infinite, then the Boolean
lattice W7 is countably infinite and hence not
isomorphic to a powerset lattice.
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Partial Order to Linear Order

Definition. A subset S C Wy is satisfiable
if and only if there exists a valuation v such
that inf v(S) = 1, i.e. such that v(¢) =1 for
all p € S.

Example. Suppose a € A. Then {a, (—a)}
is not satisfiable since, if v is a valuation with
v(a) =1, then v(—a) =1—-1=0# 1.

Theorem. A subset S C W is satisfiable if
and only if every finite subset of S is satisfi-
able.

The theorem above is the Compactness
TheoremP| Tt can be used to extend various
results to the infinite case. Dilworth’s The-
orem for partial orders of finite width is one
example. Another is the following.

Definition. A linear extension of a partial
order < on a set P is a linear order < on P
such that p < ¢ implies p < ¢. If relations on
P are viewed as subsets of P x P, then this
is the same as saying <C<.

Lemma. Every finite partial order has a lin-
ear extension.

Proof. Suppose (P, <) is a partial order, and
Y,z € P are incomparable. Define a relation
< on P by p < q if and only if p <X ¢, or
p <y and ¢ = z. So, < is an extension of <
having fewer pairs of incomparable elements
than <. Observe that it is possible to use the
fact that < is a partial order to check that <
is a partial order. So, induction can be used
to obtain the desired result. O

Proposition. Every partial order has a lin-
ear extension.

Proof. Suppose (P, %) is a partial order. Let

Se={(p,q9) e PxP|p=2gq}

Sy =A{((p,a) AN(g,7)) = (p,7) | pq,7 € P}
Sa =1{=((p,a) N (q,p)) | p,q € P and p # q}
Se={w:q9) Vv (¢,p) | p,q € P}.

Let
S=5.USUS,US.C Wpxp.

Suppose F' C S is finite. Let Q C P be the
set of consisting of all elements of P appear-
ing in F'. Then @ is finite since F' is finite and
the elements of F' are finite strings. Then
() is a finite subposet of P, so the lemma
yields a linear extension < of the ordering on
@ induced by <. Let v : Wgxg — {0,1} be
the valuation with v(r,s) = 1 for r < s and
v(r,s) =0 for r £ s.

Suppose (p,q) € Se N F. Then p < ¢ and
p,q € Q. Since p = ¢ and < is an extension
of <, we have p < ¢. Then v(p,q) = 1. Sim-
ilarly, since < is transitive, antisymmetric,
and has comparability, it is possible to show
that v(¢) =1 for all p € (S;US, US.)NF.

It follows that F'is satisfiable. Using the
Compactness Theorem, there exists a valua-
tion v : Wpyp — {0,1} such that v(¢) = 1
for all ¢ € S. Using the last paragraph of the
second section, the relation < on P given by

if and only if  wv(p,q) =1

p=<q

for all p,q € P is a linear extension of <. [

Video

youtu.be/f3a-0-Vn7Fg
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